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On_the Dvnamic Behaviop of
Plastic-Rigld Beams wnder Transverse Load™
by

Carl-Fredrik A. Leth

Abstract.

This paper extends previous work on the dynamic response
of simply supported and clamped heams to transverse impact load-
ing. Symonds,[1]3, has given the solutions for these problems
when the load-time relation is of a type described as ''blast
loading", In this paper solutions are obtained for the deforma-
tions caused by a general shape of the load-time curve, Numerical
examples are computed for a symmetrically triangular load-time

relation and compared with a rectangular load-time relation,

Introduction.
A recent paper written by Symonds, {1], treats the

dynamlcal problems of simply supported and built-in beams, loaded
with a concentrated force at the midpoint or a uniformly dis
tributed load of magnitude such that large plastic deformations
occur, It ls there shown that two types of plastic deformations
appear at high enough loads, There is either a moving hinge
between two rotating rigid parts or one rotating rigid part and

I, The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract N7onr-35801 with Brown University,

2. Resegrch Assistant, Graduate Division of Applied Mathematics,
Brown University, Providence 12, R, I.

3+ Numbers in square brackets refer to the bibliography at the
end of the paper,
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one finite plastic region, where the fully plastic moment is
developed at all sections, The solutions of the second type of

problems are restricted in [1] to load-time functions P(t)t
which are maximum at ¢t = 0 and satisfy the inequality Pt Si‘?Pdt.

The aim of the present analysis is to give solutions for
arbitrary load-time relation for those problems where fully
plastic regions appear, Those are the built-in beams with either
a concentrated load at the midpoint or uniformly distributed
load, and the simply supported beam with uniformly distributed
loade Simply supported beams with a concentrated load at the
midpoint are treated in full generality by Symonds, [1].

The same assumptions as in [1] and in two other papers
[2]) and [3] are used, These involve a plastic-rigid treatment;
elastic deformations are assumed to be negligible., In [2] and
[3] appear discussions about the conditions under which this

analysis may give a reasonable answer,

A. The Built-in Beam with Concentrated Load
Those properties of the beam which enter into the problem
are defined in Fig., 1. ¢ 1s the angle from the horizontal to

the rigid part of the beamy w and w, are the angular velocitdes,

o
and & is the deflection of the midpoint of the beam, M, is the
fully plastic moment and m is the mass per unit length, The
force P(t) has the general form, shown in Fig. 2, The same
dimensionless quantities as in the previous papers are used,

They are
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T is an arbitrary reference time, e.g., the time during which a
rectangular impulse acts,

At the start of the loading there is such a small force
that the beam does not move, This is the first phase, which ends
when the motion, described in Fig, 3 starts, With & = 0 we obtain

é’ P’t = 2M°o

Hence the first phase ends when p =pu; = 4,
The second phase takes place for loads exceeding kp) sSee
Fig. 3+ The moment equilibrium equation about the built-in

l P4, =
2

!
)
=
+

Wi
g2
o
4

or

Q! (1)

il
(VY 199)
=

!
o
®

Dot denotes d/dt and prime d/dfn. Successive integrations give
Q and ® This phase ends when a region of fully plastic moment
develops from the built-in end., This appears when R = 0,(Fig. 3).

- 2° _
R—%P—%m&u-o

or
Qt = Be

Substituting this into the above expression for Q! determines
Bry = 12, Hence the second phase applies for 4 < p 12,
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For pup > Prp @ configuration as in Fig. l.appears. We
must here distinguish between two cases, namely { £ O and
E 20, If E £ 0, which we here call the third phase, the fully
plastic region 1s increasing in length. The angular velocity
of the element in the fully plastic region is described by w,e
As there 1s no shear force acting within this region, and there
are no exterior forces, the velocity and angular velocity must
remain constant as long as the element remains within the plastic
region, Hence Wy is a function of x only. The element has the
same angular velocity as the inner part of the beam had when
the interface just passed it, In the Appendix of [2] the
acceleration condition across a moving hinge is derived. In
this case there is no difference between the angular velocity on
. each side of the moving interface and so the accelerations are
continuous, Therefore the accelerations of the middle part of
the beam are given by ({4 = x):.», Fig. 4, The moment equation
about the midpoint of the beam and the equilibrium equation give

2Mo = % mE3l>3(:»

% P = % m:2£?&

or
83" =12
\ 2 =p, |
Ffom these we have 3
‘ g=32, o =, 2)
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Two integrations give Q and @,

Phase IV considers the case élz Oe There 1s now a
difference between the angular velocities on each side of the
moving interface, This introduces, see [2], a jump in the
acceleration across the moving interface of value é&[w - wo(E)].
The inner part of the beam therefore has the acceleration
(4 - x)& + E%[w - wo(i)], Fig. 9. The moment equation about
the midpoint of the beam and the equilibrium equation become

2M, = % me?£ 43 [w - w (E)] + % m53434:’f§7

£p= nEEL2 [w - w (E)] + 4 mE220 \;
> 12 = 30 + 383" [ - ,(8)] 1
p=e% +2eg' (2 - 200

From these we obtain

Q' = 3 = 24
3
g
Q=Q(g) + 122 ph
£7%

Eliminating Q by taking the derivative with respect to time of
the second equation ylelds

1.2

E 12 - pg "_ 3 aQ, 1
P?r'+2uﬁ+-—-£—,-2—€€ X



Al11-108 6

p=122. .§+.§.[ g =2 ak +c ]
‘ %o
d 121 - cl § f
j pdn = .__-E-- +f %5 Q E dE 2 gglag + Coo (3)
qO \;‘Eo E \’EO

As Qo i1s a given function of §, the two integrations on the
right hand side can be performed. On the left hand side is
the given impulse., Hence this equation yields £(n). Q(n) is
then determined by

12 -
Q:QO(E)-i-—___.E.E.
2.1t
£°E
- a0
| d
=Qo(g)+;13.[12q-c1-; 53322&:]. ()
J&
e

. The two constants of integrations C1 and 02 are determined by
the values of & and Q that apply at the beginning of phase IV,
o and Eo denote the values of 1 and § at the beginning of
phase IV, This phase ends when § = 1 or i = 0.

The motion following phase IV for a decreasing load is
governed by the equations given in phase II, with the new initial
conditions., The problem ends when Q@ = O, Note that during the
last part of the problem we may have vanishing p.

b a———— - AT—— < 7 T s B e L. \ .
v b .
’
A .
- EET .
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B. e S t =-in B
with Upniformly Distributed Load

These two problems are very similar and are treated
simultaneously, The difference appears at the supported ends,
When motion takes place the moment at the supported end is kMo,
where k = O for the simply supported beam and k = 1 for the
built-in beam,

The uniformly distributed load has a total value P,
During the first phase there is no motion. This phase ends when
the motion of Fige. 6 starts., We obtain with ;:= 0

(1 + KM, = & pPi
or
po = 4(1 + k),
I
Hence phase I applies for 0 < p < W(1 + k).
During the second phase the motion of Fig, 6 1s appli-

cable, The moment equation about the supported end yields

+ + l . —
or

Q' =gy - 30 + k), (5)

Successive integrations give Q and &, When checking for the
maximum moment we find in thls case that a region of fully
plastic moment starts from the midpoint. It begins to develop
when the acceleration of the midpoint reaches the value P/24m,
Hence

L o=
2md s
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or
Qt =%Po

Substituting this into the above expression for Q! determines
Brp = 12(1 + k). Hence the second phase applies for
(1 + k) < p £12(1 + k),

For p > ”II the motion of Fig., 7 takes place, In phase
III we assume E S 0. This implies that the acceleration is
cdntinuous across the moving interface, The acceleration con-
dition at x = {4 and the moment equation about the supported end

take the form

o- P !
Elw = 5T, AL
353 ° _ 2
(l+kmq+%££mw—&5'&?b!
or
1
- g
30t = 3 52, -
. g-qt = & 31+ k) |
. From these we obtain
L4 i
g:g\/.'}_(l_:__lil, (6)
R (7)

4 \/3(1 + k)

Two integrations give Q and ¢.

In phase IV we consider é'z O. Compared to phase III
there 1is a difference only in the acceleration condition across
the moving interface, Because of the jump which has the value

[ ]
EA[w - uo(c)], the acceleration condition across the interface
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1 . fl
and the moment equilibrium condition about the supported end

take the form
il

Elé + Eb[w - w(E)] = zﬁz' L

3930 = 2
(1 +.k)Mo+J3-£4’,mw &E’.&PU!

= 260" + 2'[Q - _(5)]
pe® = 2k’ v na v,

Eliminating Q in the same way as before we obtain

'3 3 "
*‘—%—-&%z, + EZ + 12(1 + k) + l._(}_.h)ﬁ_ 1+g3___

S a4z
3 d
4 b 120 + k 2 k 4E3 0
3 [%T‘ -5—21-_15 + 24(1 + k)n) = 4§ T o'
2 ol nt' ' '53 aQ
b= & 52+ - (L;-fk)-m +h§-[J' £ 2 ag + ¢ ]
g
1 0
N 12(1 + k)n - 2C
J pdn = 2 -+ + -Jg[' g3 ——dc]dt:+c (8)
T U o

The constants of integration ere determined in the same way as

in the previous problem, We have

2
\ Q=g () + A+ k) -
2
4§
or
Q=Q<§)+-15[6(1+k)q-cl- :39—%-&] (9)
| ° g £ dg )

0
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This phase ends vhen { = 1, or { = O,

The fifth and final phase has the same form and solution
as phase II, New initial conditions apply. This phase ends
when Q = O, As before the load may vanish during this phase,

or during the previous phase,

Cy The Triangular Pulse for the Built-in Beam with a

Concentrated Force at its Midpoint
In this section we compute the solutions of a typical

problem which exemplifies the method described in the previous
sections, We choose the built-in beam loaded with a concentrated
load at its midpoint where the load-time relation is a symmetri-
cal triangle, see Fig, 8:

P=Pm%, 0OgtgTy P=PR(2-%), Ttg2r; P=0,t32T
or
B=Hply 001y p=p@-1), 1<nL2; ¥ =0n22

We have to distingulsh between three cases, The first consists
of Ik < By £ 12y so that the fully plastic region never occurs.
The second case consists of 12 ¢ By £ Bos Where p, is determined
by the condition that the force will not vanish during phase IV,
The last case considers By 2 B

In the first case only phasesI and II take place, We
have phase I when O £ 1 £ 4/, . During phase II we have

Q' =g-|.tmq -6 (1a)
Q=&pmn2-6q+%é
- 3 2 12 6
d= -3 + 22 q - .
b b - 31 g0 -2y
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This is valid for n £ 1+ We have at n =1

P
= & - 2 6
¢-—)+p,m 3+t_£7

For n > 1 the force is given by p = p, (2 - n). Hence
v_a
Q = 2 |J-m(2 - T]) -6 (1b)

Q=3(um-2)q-&pmq2-%pm+l§.

=3 2 2
= S(p, - 2)1 -ﬁumn3-(%um-%;)n+%pm-ﬁ%.
m

These expressions are valid until Q = 0 or n = 2, 1In the first
case, when Q = 0, we obtain the following final values, when the

motion ceased

m

@(l):.s.p' +‘/§p-18-12\/-2-+-12-+_‘+822_6_6)+2
g2 . bm P lg‘:n"r B

This is valid for f, < 2 i.e., p.msh-+2\/§. For p.mzk+2\/§
we obtain at n =2
Q=2%p - 12 + 12
i <224}

m
¢=%}Lm—12+ﬁi--&6-?o
m

For n 2 2 we have
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12
by = 60 + e

=3 12,
o= Gp, + umﬂ--3n

The motion ceases when Q 0 or

]

12

(1e)

- % by - 2,
p'm

f‘f':i!i“m"“":'a'

The final angle becomes

¢(2) 3.
T K ST =

For the second case, 12 £

the same as before, but in this c

load reaches the value Bi1o l.eey

have Q. = 48/pm and &y = 128/

During phase III we have

12
g
Bph
o' - m3ﬂ3
1k

305
o 11 121
2880 * 1)

(4 + 2 V2R, < 12),

Pm S Boo phase I and II are
ase phase II ends when the

n= 12/pm. For this value we
2

(2a)

(2b"

_ 1025h . (20)
Py

This phase ends at n =1, For this value we have

o
A2 3%5 ie
S T hy Yo g e

LT o
;

3

°m=z§§6+t2j‘m'é&'
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The angular velocity in the fully plastic region is Q,(x). It
is determined by

3.4
= Pm 1 12 = 12
Q = == h = .
O(X) —g-?z— + P-m where 1 “‘mx
Hence
"
Qy(x) = +12
BpyX m
During phase IV we have
L i
i 12 - C £ 540
- 1 ; 1 3 P4
(2 = n)dn =— + o Ez.[ ;e dg] 4 + Cy.
1 12/up, 12/py (3a)
We h
e ave on(E) _ 1)4)4..
TS
m
Hence \
,@
2 Py 2
= [ J dg]dg - L& - & + ]i:_ .

2
12/p,m l2/p,m n

Moreover the initial conditions determine Cl = 12 and 02 = 0,
Equation (3a) therefore yields

2y _ - 2y -
(umi) - 2n(pmg) (2 = kn + 1°)
,‘Er;=n: /2 (q - 1)
E = :‘]}2 . (3b)

pplVZ - /2 - 1))
The minus sign in front of the square root 1s chosen in order to

ensure § > O, This phase ends when § = 1, 1l.e,,
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= - L2
Ny = (V2 + 1)(/2 )
In order to have nyy £ 2 this case 1s restricted to
p:m s p.o =12 + 6 \/-.o

Inserting the above value of £ in the expression for Q, equation

(4)yylelds
o~ 5 3
Q=0 [3VZ + 1) -3v2IV2 - (/2 - 1)1] +2'uf (ka)
3

o = ';-‘.}‘-6 [2,8 + 0.8 vZ = 120 + 8(3 = VD)2 = ¥(7 = % VB>

+6(3 -~ 2Vt - 123 - 16/2)9°) + 120 . 10244

5 . by
(kb’

At n = Nyy We obtain

Q. = 12[2 + V2 - 4(5 + 3y2) ]
Pm
o =03+ 03,2 Y2 63 - 120 + 96 V2 . 1049,6 + ggé,&@ .
v 1 m P M
m

During phase V we have for N1y £n1L2

Q':-aipm(z-n)-s (1d)
Q=3(um-2)n-\3;umn2-§-um+2

Hmn
= - 2 _ 3 lg__3 + 2 3
¢ g'(l"m 2)q E;umn +("m 7 bpl + T B

-(1+»/§)p.m+18+12/§- ol + 345,62
P

At n = 2 we obtain

s
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3

Q==p -12 + 22
2 ' nm P
2
o =2 +022pm3_\/§pm+6+12¢§+g&_ L.bt + 345,6 .
Fm P
m
During the second part of phase V we have
Q' = -6 (1e)
Q='3-pm-6q+l'-f;
3 2 2 3
¢=(§pm*‘t)n-3q +Q|3._‘Ll.%§—‘/zum

(3+\/§)pm+18+12\/§- l+)++’-2|-62.
P
The motion ends when Q = 0, 1.€ey ngp = &”m + f— o The final
m

value of ¢ 1s

3 2 =
¢§3)=Q_-3_qu..éﬁpm tdp - (3 +vEp, +21 +12V3
_2&.&:..2&1&)@ (12 S By £ 12 + 6 V2),

Hm

In the third case p, > g, = 12 + 6 V2, We have the same
solutions as before until n = 2, At thils time the force van-

ishes, We have at N =2

[ = M; E' = 6(y2 + 1)

\M ™ | -

Q=8{2-11pm3+ﬁ
¢=9.._6_>g_;_q..z“m3+}?%- 02k,

P

e o a3 e o < 1T
g 4 ) ' \
. - . . «
. ’ i
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During the second part of phase IV y = O. We obtain

£ £
l2q - C N
0 = E—-ﬁ_“& \J‘ .EJ,-Z[ J -Elz-di]d€+02(30)
Y6+ By 6(3+/E) /g
or
c
%gz =n+v2 -1~ I%.i‘ (n+y2 -1 - ;%)2 - ;Eg .
m

The initlial conditions at n = 2 determines

and furthermore requires the minus sign in front of the square

root. Hence

=
n
n

n=yn -2

=
=
g

g = 12 . (3d)

pm (0 = gﬂz - 2)

Phase IV ends when { = 1, This gives Ny = ;% + ﬁi . Inserting
m

this value for £ in the expression for Q, equation (4), yields

3
TP VE R e

® = [- O.kqs + 2q3 - 30+ 0.4(n2 - 2)5/2
3
+ 0.2 V2 + 0,7] + 420 . 19253, (4d)
Eﬂ B P’m

At the end of phase IV we have
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=, - 24
QIV Hm P
3
(0:2 V2 + 047Dy 2
Hm
b1y = ynn "1'2‘*“'13;’3"

During phase V we have

OV = - 6 (1£)
Q=3-p. - 6n+ 12
2 ™ ™ ;
(002/5*'007»
= 12 2 m
0= G+ o - a? s 20
2
3|"m 6
- g -3 - 3.
. B
The motion ends when Q = O, This gives
- 4 2
Mo =L by ¥~
f L'm P
(0.7 + 0.2 V2 3
(W) _ m_ _ 25,6
ot Y= - _5..E (, 2 12 + 6 V2).

™)
Qf as a function of Fm is plotted in Fig. 10,
We are also interested in the final deflection of the
midpoint of the beam. The beam is straight for the part
0 < x £ €L, where ¥ 1s the minimum value of during the motlon:
T = 12/ e The part E4 ¢ x < £ 1s curved due to the finite
plastic region. Consider an element in this part of the beam.

It becomes a member of the finite plastic region at time

Ny = &-%, (see equation (2a)), It remains in the finite plastic
m
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region until

; n, = (V2 +1)(/2- &%‘c), no £ 25 (see equation (3b))
- .

or X
N, };.21, + Qs. N, 223 (see equation (3d)).
m

During the time in the finite plastic region this element has
the constant angular velocity Q = 64 + 12 , Hence its

px Pm
rotation during the time in the finite plastic region 1s
L
= (364
o = (LTF +
EmX

motion the element is rigidly connected to the center part of

-]‘-g-)(q - 14). During the remaining time of the
Mo 2 1

the beam, At time Ny the center part of the beam has the slope

5
0. = 8647 yizl*& - 102:1t.  (see equation (2d)).

-2

At time Ul the center of the beam has the slope

3
O, 0.2 V2
¢§1)=(3+ V—)“m 'thl'\%&ﬁ){:*' 296 + 950,% 2&?
144 oy X p.mzx
p2h212yE | Qs v 2l JBY 02
| Bm I x
’ 1, £ 25 (see equation (4b)).
(0.7 + 0,2VEy > | 2 3 5
2) - mo_ppt .3y
%2 s T 15 -
hy X
+ % + fm%; - l;oiéﬁ' N, 2 23 (see equation (4d)).
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®
Hence the final angle O ¢ in the part €L <x < 41s given by

(1) ¢(3) - ¢§1) + & + @y elements for which L2

of f o
[ ]
Cc(,?-) = ¢i(‘)+) - ¢§2) +® + &, elements for which n, 2 %
We therefore have
(1) _ Q) (2) _ .(2) L 12
Af = ¢f and Af = ¢f £ Pm £
3) (w v u) hy
A3’ = \!-%f &3 . 12 g <12 +6VZ
ke 1
(W) _ (1+)"‘ (1) n (2) 5/x S
Af = f £ + ‘ (bof d(i) +.f ¢of.d(2) }Lm >12 + 6 V)
Jg \52
wuere E _ 12 + 6 :2
. 2 p,m

®
Af as a functioh of p is plotted in Fig. 11,
We compare the above solutions with the solutions for a

rectangular pulse defined by the values (Fig., 9)

P

p

Ppp 0t Ty P=0,t>T

or

By 01 <L p=d, 021,

This problem 1s solved in [1], The solutions are

I%pm Fm (hﬁpmﬁ:m) * * o,
3
= Bm 12
@f o6 (pmz )
2
Af."‘l%p'm -%”m (’+.S.l*m$12)
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Af=;E-(3+2&n‘%) ¢, 2 12).

The final deformations for the rectangular pulse are plotted in
Figs. 10 and 11,

The solutions have also been computed in a similar manner
for the beams discussed in Section B for the symmetrically tri-
angular load-time relation and the rectangular load-time relation

(Figs. 12 - 15)0

D, Summary

Equations (1) - (9) determine the motion of the beam for
the general load-time relation of Fig. 2, In particular the
final deformations have been computed for the triangular load-
time relation of Fig, 8 and the results are shown in Figs, 10 -
15, In these figures the final deformations are also shown for
a rectangular pulse, (Fig. 9), having the same total impulse as
the triangular pulse, A comparison between these two pulses
shows that the final deformatiocns of the triangular pulse are
smaller than those of the rectangular pulse and that the differ-
ence is 15% - 35% of the values of the rectangular pulse when
the maximum load exceeds twice the static collapse load. Similar
comparisons with the rectangular pulse have previously been made,
see [4], and they show differences between the final deformations
that are of the same order of magnitude as found in this paper,
The conclusions of [4] can therefore be expected to be valid

for the problems discussed in this paper,
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Fig. 3. The external ara
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Fig. 6, The external and dynumic forces during phase I for
the beam with uniformly distributed load
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